首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
  国内免费   23篇
  2023年   2篇
  2022年   2篇
  2021年   7篇
  2020年   9篇
  2019年   6篇
  2018年   3篇
  2017年   2篇
  2016年   4篇
  2015年   4篇
  2012年   1篇
  2011年   1篇
排序方式: 共有41条查询结果,搜索用时 78 毫秒
1.
2017年5~11月,我们在四川亚丁国家级自然保护区内共布设64台红外相机,对保护区内的兽类和鸟类多样性进行了调查。经过8 394个相机工作日的调查,我们共鉴定出分属9目26科共56种的野生兽类和鸟类,其中国家Ⅰ级、Ⅱ级重点保护野生动物分别有5种和13种,被IUCN红色名录评估为濒危(EN)、易危(VU)、近危(NT)的野生动物分别有2种、3种和6种。相对多度指数居前三位的兽类和鸟类分别是毛冠鹿(Elaphodus cephalophus)、珀氏长吻松鼠(Dremomys pernyi)、猕猴(Macaca mulatta)和血雉(Ithaginis cruentus)、大噪鹛(Garrulax maximus)、雉鹑(Tetraophasis obscurus)。本次调查初步了解了亚丁保护区内鸟兽的种类、丰富度、分布以及人为干扰情况,是亚丁国家级自然保护区第一次开展鸟兽的本底资源调查和研究。我们的调查结果对掌握亚丁国家级自然保护区的鸟兽种类和分布现状等本底资料具有重要意义,同时也为保护区今后的科研工作及开展野生动物的保护管理和长期监测提供了数据支持和指导。  相似文献   
2.
谭波  吴庆贵  吴福忠  杨万勤 《生态学报》2015,35(15):5175-5182
为深入了解川西亚高山-高山森林冬季生态学过程,于2008年11月—2009年10月,在土壤冻结初期、冻结期和融化期及植被生长季节,研究了不同海拔(3582 m、3298 m和3023 m)岷江冷杉林土壤养分动态及其对季节性冻融的响应。3个海拔森林土壤冬季具有较高养分含量,且随土壤冻融过程不断变化。土壤有机层可溶性碳和氮、铵态氮、硝态氮含量在冻结初期显著增加后快速降低,并随融化过程迅速增加后再次降低,而土壤可溶性碳和氮、硝态氮含量在冻结期变化不明显,铵态氮显著增加。矿质土壤层可溶性碳和氮、铵态氮含量也在冻结初期显著增加后降低,而土壤可溶性氮、铵态氮和硝态氮在冻结期显著增加,并在融化期经历一个明显的含量高峰。海拔和土层的交互作用显著影响土壤可溶性碳和硝态氮含量,土壤养分含量与土壤温度的相关性随海拔差异而不同。这表明季节性冻融期是土壤生态过程的重要时期,土壤冻融格局显著影响川西亚高山-高山森林土壤养分动态。  相似文献   
3.
王雪梅  闫帮国  史亮涛  刘刚才 《生态学报》2020,40(21):7767-7776
水分是干热河谷植物生长过程中最主要的限制因子,种植密度增加也会引起植物生长的资源限制,两者交互作用下植物生长性状及种内关系的变化特征还不清楚。以干热河谷优势植物——车桑子为研究对象,根据元谋干热河谷年均生长季降雨量设置3种水分梯度:高水分、中水分和低水分,同时在各水分梯度下设置4个种植密度:1、2、4、9株/盆,探究水分、种植密度及其交互作用对车桑子生长性状、生物量分配及种内相互作用的影响。结果表明:(1)低水分条件下,车桑子生长和水分生理受到抑制,但车桑子在较低的叶水势下依然能够保持较高的相对含水量;(2)干旱胁迫显著降低了车桑子总生物量和单株生物量,显著增加了枯叶生物量比例,低水分和中水分条件下,增加种植密度对总生物无显著影响;而高水分条件下,增加种植密度显著提高了车桑子总生物量;(3)低水分显著增加了茎、叶生物量的异速生长指数,将更多生物量分配到叶,而种植密度增加显著降低了茎、叶生物量的异速生长指数,增加了茎的生物量分配;(4)通过相对邻体效应的计算,各处理条件下,车桑子种内关系均表现为竞争作用,并且,这种竞争作用的强度随水分的减少和密度的增加而增加。在高密度条件下(9棵/盆),增加水分不会减轻种内竞争作用。综上,水分和种植密度均会对车桑子个体的生理生长产生影响,在植被恢复过程中,应考虑水分和种植密度对车桑子个体产生的资源限制作用。  相似文献   
4.
刘美  马志良 《生态学报》2021,41(4):1421-1430
植物生物量分配特征的变化反映了不同环境条件下植物的适应策略,全球气候变暖正在改变青藏高原高寒生态系统植被动态和生物量分配格局。然而,到目前为止,有关青藏高原高寒灌丛生物量分配特征对气候变暖的响应研究较少。为了探究气候变暖对高寒灌丛生物量分配的影响,以青藏高原东部典型的窄叶鲜卑花高寒灌丛为研究对象,分析了高寒灌丛灌木层、草本层和群落水平生物量分配特征对开顶式生长室(OTC)模拟增温的响应。研究结果表明:整个生长季节,模拟增温使空气温度和表层土壤温度分别升高0.6℃和1.2℃,使表层土壤水分含量下降2.7%。模拟增温使草本层和群落地上生物量显著增加57.8%和7.2%,使灌木层、草本层和群落根系生物量显著增加42.5%、105.6%和45.6%。然而,模拟增温没有显著影响灌木层地上生物量。同时,模拟增温使灌木层、草本层和群落总生物量显著增加25.6%、85.7%和28.4%,使灌木层、草本层和群落根冠比显著增加33.2%、30.4%和36.0%。由此可见,模拟增温在促进高寒灌丛生物量生产的同时将显著提高向地下根系部分的分配比例。Pearson相关分析表明,高寒灌丛生物量分配与空气温度、土壤温度和土壤硝态氮含量呈显著正相关关系;多元线性回归分析结果也表明,空气温度、土壤温度和土壤硝态氮含量解释了高寒灌丛生物量分配变异的50.8%以上。这些结果表明,青藏高原东部高寒灌丛植被能够通过调节生物量分配模式应对未来气候变暖。  相似文献   
5.
为了解林窗位置对香椿细根分解及土壤真菌群落多样性的影响,以川中丘陵区30a生柏木人工林为研究对象,采用Illumina Miseq高通量测序技术研究200 m2人工林窗中心位置(GC)、边缘位置(GB)、郁闭林(CC)对香椿细根2a自然分解后土壤真菌群落结构及多样性的影响。结果表明,林窗内不同位置之间微环境差异显著(P<0.05),土壤理化性质对林窗位置变化的响应较细根养分元素更积极,GB位置细根分解速率显著高于GC和CC。土壤真菌门水平在3个林窗位置间无显著差异,其中子囊菌门、担子菌门是优势类群;腐生营养型真菌在3个林窗位置上具有显著差异,散囊菌目、粪壳菌目、肉座菌目、刺盾炱目、伞菌目是3个位置上相对丰度值>1%的优势类群,刺盾炱目、伞菌目相对丰度在GB和CC之间有显著差异(P<0.05);青霉属和曲霉属是真菌在属水平上的优势类群,其相对丰度在3个位置间有极显著差异(P<0.01)。林窗位置未对真菌群落α多样性产生显著影响,但群落β多样性对位置变化的响应显著。GB位置群落β多样性显著高于GC和CC (P<0.05),共有种数量最多,GC位置特有种数量最多。冗余分析发现较多环境因子对真菌群落的影响显著(P<0.01),Mantel test (和partial Mantel test)分析结果表明土壤pH值、土壤含水量、土壤温度、土壤速效磷、土壤全氮是真菌群落多样性的重要影响因子。综上所述,林窗内位置对土壤真菌类群构成和群落β多样性具有差异性影响,在柏木人工林内实施林窗式干扰有助于调节细根分解等地下生态进程。  相似文献   
6.
亚高山森林林窗大小对凋落叶木质素降解的影响   总被引:1,自引:0,他引:1  
吴庆贵  谭波  杨万勤  吴福忠  何伟  倪祥银 《生态学报》2016,36(18):5701-5711
木质素降解是认识高寒森林凋落物分解过程的关键环节,可能受到林窗大小及其在不同季节水热环境的影响。采用分解袋法,研究了川西亚高山森林不同面积大小林窗下红桦(Betula albo-sinensis)和岷江冷杉(Abies faxoniana)凋落叶在初冻期、深冻期、融化期、生长季节初期、生长季节中期和生长季节后期的木质素分解动态特征。研究结果表明,采样时间和林窗面积大小对两种凋落叶的木质素降解均有显著影响。经历1a分解,红桦凋落叶的木质素降解了21.53%—27.65%,而岷江冷杉凋落叶的木质素富集了7.95%—19.40%。较大林窗促进了冬季岷江冷杉凋落叶和生长季节红桦凋落叶木质素的降解,抑制了冬季红桦凋落叶木质素的降解;而生长季节岷江冷杉凋落叶木质素富集速率则为林下大林窗中林窗小林窗。逐步回归分析表明,凋落叶木质素的降解过程在冬季主要受到负积温和土壤冻融循环次数的影响(木质素结构的物理破碎),而在生长季节则主要受到平均温度和正积温的影响(木质素的生物降解)。可见,川西亚高山森林木质素降解受林窗格局变化的显著影响,且林窗大小对凋落叶木质素降解的影响与物种和分解时期有关。  相似文献   
7.
高山森林林窗对凋落叶分解的影响   总被引:1,自引:0,他引:1  
吴庆贵  吴福忠  谭波  杨万勤  何伟  倪祥银 《生态学报》2016,36(12):3537-3545
林窗对降水和光照等环境条件的再分配以及分解者群落的影响可能深刻作用于森林凋落物分解过程,但有关高山森林林窗大小对凋落物分解的影响尚无研究报道。采用凋落物分解袋法,研究了川西高山森林不同大小林窗对非生长季节和生长季节红桦(Betula albo-sinensis)和岷江冷杉(Abies faxoniana)凋落叶质量损失的影响。结果显示,经过1a的分解,不同生境下红桦和岷江冷杉凋落叶分别分解了27.25%—30.12%和27.04%—27.96%,其中非生长季节占53.83%—60.18%和50.23%—59.09%。林窗对红桦和岷江冷杉凋落叶质量损失的影响因物种不同而呈现季节差异。总体上,林窗加快了岷江冷杉凋落叶的分解而延缓了红桦凋落叶的分解。与郁闭林下相比,林窗显著增加了2种凋落叶非生长季节的质量损失速率,显著降低了生长季节2种凋落叶的质量损失速率;2种凋落叶质量损失速率在非生长季节随林窗面积增大而加快,在生长季节随林窗面积增大而减慢。林窗显著影响了初冻期、深冻期和融化期岷江冷杉凋落叶的质量损失率,但对红桦凋落叶质量损失率影响不显著。可见,高山森林凋落物分解过程受到林窗的显著影响,并且阔叶和针叶凋落叶在非生长季节和生长季节对林窗的响应具有明显差异。  相似文献   
8.
基于景观生态风险评价的涪江流域景观格局优化   总被引:1,自引:0,他引:1  
张雪茂  董廷旭  杜华明  廖传露  王飞 《生态学报》2021,41(10):3940-3951
以流域为尺度进行景观生态风险评价以及景观格局优化,有利于为流域生态系统服务的提高和人类活动管控提供科学依据。以涪江流域为研究区域,从"自然-社会-景观格局"3个维度选取10个评价因子建立评价指标体系,采取空间主成分分析法(SPCA)对流域景观生态风险进行综合评价,再基于生态风险评价的结果和生态源地利用最小累积阻力模型(MCR)和网络分析等方法实现流域景观格局优化。研究结果表明:①涪江流域景观生态风险等级在空间分布上呈西北部高于东南部地区,主要是受自然和景观格局因子影响较大。②涪江流域所面临的生态风险问题较为严重,生态风险等级为中度及以上的区域面积总和为25596.51 km2,占研究区总面积比例的65.35%。③生态源地以林地和水域为主,面积为11194.28 km2,占流域总面积比例为25.58%。④构建生态廊道共41条,总长度为5229.04 km,其中原有廊道29条,新添廊道12条,提取生态节点53个;利用网络分析形成了以主廊道为"中轴",构建的生态廊道为"辅助",提取的生态节点为"枢纽"的较为完整的网络生态结构。对研究区景观格局优化前后的连通度进行对比,优化后的整体景观格局连通度得到较大幅度提升。  相似文献   
9.
地形是动物栖息地中非常稳定的环境因素。了解有蹄类特殊时期对地形的偏好,既有助于揭示动物行为策略形成的机制,又有助于我们实施保护和管理。本文对羚牛(Budorcas taxicolor tibetana)春季地形选择特征进行了初步探讨,数据来自于4只佩戴GPS无线电颈圈的羚牛3月中旬至4月中旬的定位数据。通过对羚牛活动位点与可选择地形的7个地形因素(坡度、坡向、坡位、海拔、地形起伏度、距峭壁距离、距山脊距离)的比较分析,发现羚牛在春季对地形存在选择。通过因子分析发现,影响羚牛春季地形选择的因素可以分为地形复杂度因子(坡度、地形起伏度),反捕食因子(海拔、距峭壁距离)和坡位因子(坡位)三类因素。与可供选择地形相比,羚牛利用的地形更偏离峭壁或陡坡、坡度更缓、海拔更低、明显偏离山脊、地形起伏程度较低。羚牛显著倾向于选择平坡和中位坡,且主要选择阴坡和阳坡。雌雄个体在7个地形因素的偏好上存在显著的差异,但雌性在距离峭壁和距离山脊的距离以及坡位的选择上与可供选择地形均无显著的差异。  相似文献   
10.
舔食盐分是野生动物的常见习性,但针对具体物种的研究较少。我们于2013年秋季(9~10月份)利用4台红外触发相机在唐家河国家级自然保护区对小麂(Muntiacus reevesi)利用人工盐场的时间格局进行了初步研究。共收集照片记录398条,其中可鉴别性别的记录288条。结果显示,小麂日均访问盐场(12.97±2.14)次,舔盐高峰出现在8:00~9:00时以及14:00~16:00时,低谷分别出现在2:00时、6:00时以及21:00~23:00时。独立样本t检验显示,小麂对距离公路较远的盐场访问次数显著高于近公路盐场[远离公路盐场(10.86±2.25)次,近公路盐场(2.10±0.58)次,t=3.77,P=0.001]。不论以全天统计抑或按照不同时间段(上午、下午和夜间)分别统计,雌雄两性对盐场的利用强度均无显著差异。我们仅发现在13:00~17:00时,雄性访问盐场的强度显著高于雌性(t=﹣2.47,P=0.048),且在13:00~14:00时和15:00~16:00时出现两次访问高峰。我们推测性别间的活动节律差异、体型差异以及雄性的干扰,均可能是雌性在下午时段降低盐场利用的原因。人为活动对离公路近的栖息地干扰较强,因而影响了小麂对栖息地的利用,使小麂回避靠近公路的盐场。因此,我们建议自然保护区在选择盐场位置时应考虑人为干扰因素。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号